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Abstract 

 

 

Disclosure detection and control for analytical outputs is an almost unexplored field. However, with 

the increase in access to detailed microdata, it is becoming increasingly important to be able to 

quantify exactly what the risks are from allowing, for example, regression coefficients to be 

released. 

This paper looks in detail at the risks of linear regressions, and demonstrates that, even in the 

best-case scenario for an intruder, analytical results are fundamentally safe, and can be made 

utterly non-disclosive by the application of simple rules. Estimation of the risk of likely disclosure is 

also considered, and it is shown that the NSI can carry out its own safety tests easily, and can also 

prevent intruders generating meaningful fitted values by application of the same rules. Some 

comments on more general functional forms are provided. 
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1. Introduction 

 

Most disclosure control techniques are concerned with providing safe microdatasets for research 

use, or for making aggregate statistics safe. In both cases, “safe” refers to combining, perturbing, 

removing or summarising the data in such a way that the confidentiality of the underlying data can 

be maintained. Almost no attention has been paid to the possible risks in analytical outputs, such 

as regressions, survival functions, factor analysis, and so on. A special edition of The Journal of 

Official Statistics (Feinberg and Willenborg, 1998) on confidentiality omitted the question of 

analytical outputs entirely. The two notable exceptions are Reznek (2004), who summarizes the 

literature on conditional explanatory variables and generalises this to the class of exponential 

general linear models; and Corscadden et al (2006) who derive expressions for the riskiness of 

regression results based upon summary statistics. 

 

This is an important omission because in recent years a combination of increased computer power 

and changing policy regimes has led to a significant increase in access to confidential microdata 

for research purposes, particularly in national statistical institutes (NSIs). Whilst technological 

solutions vary across countries, a common feature is some form of laboratory, physical or virtual, 

where the researcher has freedom to operate but the NSI acts as a guardian of statistical outputs 

removed from the premises. This requires a different approach to disclosure control (see Ritchie, 

2005). As outputs will often consist of analytical work, the NSI needs to have some way of 

evaluating the disclosiveness of outputs quickly and easily. With developments in model servers 

seen as one way to solve the issue of access to raw microdata (see Steel and Reznek (2006)), the 

need for guidelines which can be implemented automatically becomes even more important. 

 

There is some confusion over the evaluation of analytical outputs. Disclosure control 

methodologists have suggested variations on rules designed for tables (for example, minimum 

frequencies, no influential or dominant points). Another key protecting factor is to put limits on the 

types of variables that are dangerous (outliers, “public” variables, extremely heterogeneous values 

etc). As these rules are typically designed for tabular outputs or anonymised data, the application 

of these rules can be at best inappropriate and at worst ineffective. 

 

Researchers, on the other hand, will typically view analytical outputs as inherently safe because of 

the transformation of data, and will view attempts to control output of analytical results as 

needlessly bureaucratic. However, this is done without any formal proof. As a result of this 

difference in views, the international trend to wider access to restricted data runs the risk of being 

stymied due to confusion over what can be released. 
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The aim of this paper is to show that 

 

• The researchers’ view, that regressions are inherently safe, is generally correct 

• There are a very small number of cases where problems could arise 

• Even in these cases, the problem is the publication of summary statistics, not coefficients 

• A simple rule is available to assess and ensure the safety of regression outputs 

• Concern over the nature of variables and the validity of analysis is misplaced 

 

We consider an extreme intruder scenario: that an intruder acquires a set of regression coefficients 

and standard summary statistics from repeated estimation on the same or a similar sample; that 

he/she has a large amount of information about the type and means of the variables and the 

sample; and that his/her only interest is in discovering something that should have been hidden – 

for example in order to embarrass an NSI. The purpose of this is to show that, even in the 

intruder’s best-case scenario, that chances of being able to uncover information range from 

negligible to zero. Hence, in realistic applications, NSIs can feel confident about the application of 

the results here. 

 

The next section describes the circumstances under which data points can be exactly identified, 

and how this can be prevented. Section three reviews approximate identification, and section four 

looks briefly at non-linear models. Section five discusses other aspects of analytical outputs which 

are relevant for disclosure control. Section six concludes. 

 

2. Exact identification in a linear regression 

 

In this section we consider a linear least-squares regression with N observations of the form 

 

( )2
1 1 ... 1.. 0,i i iK K i iy x x u i N uβ β σ= + + + = �  

 

We deal only with “genuine” regressions; that is, where N>(K+1) and K>1. It is not necessary, for 

the purposes of disclosiveness, to specify that the sample distributions of the variables do not 

collapse. We also assume that a researcher does not “create” regressions solely for the purpose of 

disclosure by differencing. The issue of the trustworthiness of researchers is outside the scope of 

this paper. 

 

We also do not make assumptions on the distribution of the disturbance term at this stage. 
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2.1 Direct disclosure 

 

Direct disclosure from a genuine linear regression is not possible without an almost perfect 

knowledge of the data. We assert this without proof; the result will become clear in the following 

section, as this case of direct disclosure from a single regression is a reparameterisation of the 

problem of disclosure by differencing two regressions. However, intuitively this may be explained 

as follows. 

 

A linear regression to determine K parameters implies K independent equations. These equations 

are linear in the coefficients but not in the explanatory variables. If the coefficients are known but 

the one or more of the variables is unknown, this can be calculated by unpicking the normal 

equations. This is feasible as long as the number of unknowns is not more than K. Therefore, for 

an intruder to be able to ascertain specific values he already needs to know NK values out of a 

possible (N+1)K. Conversely, a researcher can prevent a regression being disclosive by ensuring 

that at least K+1 variables are not known to the intruder. 

 

The sole exception to this rule is where the explanatory variables are all binary. In this case the 

regression coefficients reflect table means, and few observations in particular categories can be 

disclosive. This holds for the class of exponential linear models: see Reznek(2004). 

 

2.2 Disclosure by differencing 

 

2.2.1 Two-variable case  

 

In the two-variable case,  

 

( )21.. 0,i i i iy x u i N uα β σ= + + = �  

 

The solutions for this model are given by  

 

( )
( ) ( )12

ˆˆ /

ˆ

i i

i i i

y x N

x x y

α β

β
−

= −

=

∑

∑ ∑
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Consider the case where an intruder has two regression results. The difference between the two is 

that the second regression has one additional observation. Can anything be determined by the 

values of some variables and the estimated coefficients? 

 

If the regression is re-run with the additional observation (x0, y0) to produce estimates 

 

( )( ) ( )

( ) ( )
0 0 0 0 0

12 2
0 0 0 0

ˆ ˆˆ / 1

ˆ

i i

i i i

y x y x N

x x x y x y

α β β

β
−

= − + − +

= + +

∑

∑ ∑
 

 

then the equations 

( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( )
0 0 0 0 0

1 12 2 2
0 0 0 0

ˆ ˆ ˆˆ ˆ 1 / 1

ˆ ˆ

i i i i

i i i i i i

N y x N y x y x N N

x x y x x x y x y

α α β β β

β β
− −

− = + − − − + − +

− = − + +

∑ ∑

∑ ∑ ∑ ∑
 

 

contain two unknown values (x0, y0) but do not have a unique solution. It might be possible to 

impose one from economic knowledge (for example, wages must be positive) but this still requires 

that the other observation values (x1...xN, y1…yN) are all known. The non-linear interaction in the 

last term in the second equation mean that a complete knowledge of the N other observations is 

required in the general case.  

 

It is possible to speculate that particular combinations could be both plausible and informative. We 

consider three cases which require less information than the whole dataset. 

 

Case 1: known means of original variables and known values of additional variables 

 

The property of the OLS estimator that estimated errors identically sum to zero implies that  

 

( )( )

0 0
1.. 1..

0 0 0
1.. 1..

0 0 0 0

ˆ ˆˆ ˆ( 1)

ˆ ˆ ˆˆ ˆ( 1)

i i
i N i N

i i
i N i N

y y y y

N N x x x

N N Nx x

α α β β

α α β β β

= =

= =

 = + − 
 

  = + − + + −  
  

= + − + − +

∑ ∑

∑ ∑  

 

In this case the additional value can be ascertained directly, irrespective of the individual values of 

x. 
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However, if more than one additional observation is included, then only the sum (or mean) of the 

additional dependent variables can be ascertained. This is because the above result rests upon the 

overall prediction error of the regression being zero, not the prediction error of the additional 

observations. This is developed further in the K-variable case, below. 

 

Case 2: binary explanatory variables 

 

Suppose the original x variables are 1/0 binaries with a n1/n0 split (n0+n1 = N). If a new pair of 

observations (y0, x0) is included in a new regression, then 

 

( ) ( )( )
( )( )

0 0 0 1 0 1

0 0 1 0 1

ˆ ˆˆ ˆ0 ( 1) 1

ˆ ˆˆ1 1

x y N N n n

x y n n

α α β β

α β β

= → = + − + + −

= → = + + −
 

 

Note that the intruder does not need to know in advance whether x0 is 0 or 1; this can be 

determined easily by inspecting the constant term: 

 

0 0

0 0

ˆ ˆ 1

ˆ ˆ 0

x

x

α α
α α

= → =
≠ → =

 

 

It is plausible that the sample proportions for the explanatory variables could have been published 

elsewhere, and therefore both values (y0, x0) can be inferred from published results only. However, 

if more than one observation is added then only the sum of unobserved values can be determined, 

even if the explanatory variables are known. This is because the above result depends on the 

zero-mean-error property of least-squares estimators. 

 

This result is plausibly disclosive because the only explanatory variable is a binary variable: the 

estimates reflect set sizes not correlations, and so the frequency count is a sufficient statistic for 

the moments of xi. This is not possible where an explanatory variable has more than two values.  

 

Case 3: binary dependent variable, relative value of new observation known 

 

This example is relevant for the linear probability model: 

  

* * *0.5 0, 0.5 1i i i i i i iy x u y y y yα β= + + < → = ≥ → =  
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or for any model with a dichotomous outcome (as it can always be scaled to the above case). 

Define, using the above notation,  

 

( ) ( )( )0 0 0 0

1 ˆ ˆ ˆˆ ˆ ( 1)
1

y N N x x
N

α α β β β≡ − + − + +
+

%  

 

Then 

 

0 00 1 0 0y y y y> → = < → =% %  

 

In other words, a knowledge of the position of new observation relative to the original mean and 

the effect on the estimated coefficients can be used to determine whether the dependent variable 

has a positive or negative outcome. Diagrammatically this can be shown below: 

 

 

The original mean is xm. The new observation is below the mean but has flattened the slope, 

implying y0 was a positive outcome against the predictions of the initial model. 

 

In this case, the regression is potentially disclosive because 

 

• the change in the slope can be unambiguously determined 

• the additional dependent variable can have only two values 

• the position of additional observation  relative to the previous mean can be  determined 

• the monotonic function allows the change in slope to be unambiguously associated with the 

change in the dependent variables 

 

Unlike the first case, the exact value of the mean is not required; only the relative value of the 

original mean and the new observation is required. If the mean is available, it is possible to 

x

y=1

y=0

y*=Ι 0 +xϑ0

y*=Ι  +xϑ

xm

x0
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determine the dependent variables for two observations (distances from the mean act as relative 

weights and give the necessary second equation to solve the system). 

 

These three examples illustrate cases where a linear regression is potentially disclosive without a 

complete knowledge of the other variables in the dataset. It may be possible to define other cases 

where plausible combination of known variables and functional form give rise to potentially 

disclosive results, but it should be clear by now that these are exceptional cases rather than the 

rule. 

 

In addition, in each case we have specified that one single observation is the difference between 

the two regressions. If more observations are included, the individual values cannot be determined 

in the first two cases, and the binary dependent variables in the third case can only be ascertained 

for two additional observations if the exact values of the new explanatory variables and the means 

are known. In all cases if three or more observations is the difference between equations then the 

individual values cannot be identified. 

 

In summary, in the two-variable case there are a limited set of conditions where it may be possible 

to ascertain exact values without a complete knowledge of the data; in general, however the 

regression is not disclosive in any meaningful way. 

 

2.2.2 K-variable case 

 

Extending this example to the general case of K variables we have, in matrix form, 

 

1 11.. ( ... ) ( ... )i i i i i iK Ky x u i N x x xβ β β β′ ′= + = = =  

 

More compactly 

 

1 1 1( ... ) ( ... ) ( ... )N N Ny X u y y y X x x u u uβ ′ ′ ′= + = = =  

 

Define y0, X0, and u0 as Sx1, SxK and Sx1 matrices of additional observations, and β0 as the 

corresponding estimate: 

 

( )
( ) ( )

1

1

0 0 0 0 0

ˆ ' '

ˆ ' '

X X X y

X X X X X y X y

β

β

−

−

=

′ ′= + +
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Following the same logic as above: 

 

( ) ( ) ( )1 1

0 0 0 0 0
ˆ ˆ ' ' ' 'X X X y X X X X X y X yβ β − −′ ′− = − + +  

 

This is a system of K equations. Therefore, it is directly solvable if there are K unknowns. To see 

this, consider the identification of y0: 

 

( ) ( )( )
( )

1

0 0 0 0 0

0 0 0 0

ˆ ˆ' ' ' '

ˆ ˆ ˆ'

X y X X X X X X X y X y

X X X X

β β

β β β

−′ ′= + − + −

′= − +
 

 

Solving for y0: 

 

( ) ( )1

0 0 0 0 0 0 0
ˆ ˆ ˆ'y X X X X X Xβ β β−′= − +  

 

This equation has a solution if S≤K; in other words, as long as no more new observations are 

added than there are variables, an exact calculation of the value of y0 is possible.  

could be better explained…something about weighted average and identity in equations above? 

 

In general this solution requires full knowledge of the explanatory variables. Again, are there are 

plausible situations for which less knowledge is required? 

 

One candidate is the orthogonality of the variables. Suppose the explanatory variables are truly 

orthogonal ie X’X is diagonal; for example, X is composed of a single categorical variable with K or 

K-1 categories (allowing for the constant term). Then for each coefficient 

 

( ) 12ˆ
k ik ik ix x yβ

−
= ∑ ∑  

 

Therefore, each coefficient can be assessed independently. However, the non-linear interactions of 

the explanatory variables mean that a full knowledge of the variables is still required, unless the 

sums were published for some reason. Orthogonality per se does not mean that a regression is 

disclosive. 
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It can be shown that, just as for the two-variable case, if the X matrix does consist exclusively of 

binary variables then a plausible problem can be identified. Define a tx1 unit vector Jt=(1..1)′. Using 

the same argument as before, that the mean error is identically zero, 

 

( )
( )

( )

0 0

0 0 0

0 0 0

ˆ ˆ ˆ

ˆ ˆ ˆ

S N S N

N S N

N S

J y J Y J y J Y

J X J X J X

J X J X

β β β

β β β

′ ′ ′ ′= + −

′ ′ ′= + −

′ ′= − +

 

or in means 

 

( )0 0 0 0
ˆ ˆ ˆ( / )y N S X Xβ β β= − +  

 

As for the two-variable model, only the total effect of the additional observations can be deduced 

(as JJ′ is not invertible). Only if a single observation is added can the dependent variable be 

deduced from just sample means and estimated coefficients.  

 

As for the two-variable case, binary explanatory variables simplify the need to know means. Define 

N1 as the Kx1 vector of frequencies in the matrix X. Then 

 

( )0 1 0 0 0
ˆ ˆ ˆ( / )y N S N Xβ β β′= − +  

 

It is plausible to assume that an intruder might have frequency tables, in which case N1 is known. 

As for the two variable case, it is only possible to determine a value for Σy0i. However, unlike the 

simpler case, X0 cannot be inferred with K>2, even for a single additional observation; therefore, X0 

must be known. 

 

It is often claimed that regressions containing only categorical variables are as disclosive as 

frequency tables, as the orthogonal nature of categorical variables means that coefficients reflect 

set sizes. The above discussion places the question of categorical variables within the context of 

regression results generally, and so a special rule is not required for these variables. The reason 

regressions with only binary variables cause concern is not because variables are categorical per 

se but because the sample proportion of positive responses is a sufficient statistic for Σxik (and thus 

is not relevant where other values are possible). It is quite conceivable that these frequencies may 

be available from other tables (whereas, for example, Σxikyi is not the sort of statistic usefully 

tabulated). This will become relevant when discussing possible responses in the next sub-section. 



13 
 

 

To summarise, in the K-variable case (K>2) 

• orthogonality of regressors is not a sufficient condition for identification 

• an incomplete knowledge of the matrix of explanatory variables is a sufficient condition for non-

disclosiveness, unless 

• a sufficient statistic for Σxik exists, in which case an intruder can at best only determine Σy0i  

 

2.3 A simple rule to prevent direct identification 

 

The above discussion shows that exact identification from a regression or combination of 

regressions is not easy and requires a specific set of conditions, such as solely binary variables or 

a complete knowledge of other variables. A simple rule can then be stated for use in research 

laboratories 

 

In general, the exact values of variables underlying a regression cannot plausibly be 

determined unless the regression consists entirely of categorical variables or has a 

dependent binary variable; and disclosure by differencing is only possible route for 

identification. 

 

A simple addition can be devised that prevents even the extreme cases: 

 

A linear regression is completely non-disclosive if (1) one or more coefficients is effectively 

suppressed (that is, the coefficient could not reasonably be determined from published 

information), and (2) the relevant variable is not orthogonal to all other variables 

 

By “could not reasonably be determined” we mean that no plausible information available to an 

intruder can be used to determine unknown values. 

 

This covers all the cases above. Without a full set of coefficients it is clear that none of the 

equations above are solvable for additional observations. This also prevents disclosure by 

repeated differencing. Each new regression will create a new unknown variable, the new estimated 

mean, which in turn affects all other values. It is not therefore possible to build up a sequence of 

regression results to determine the unknown parameters. Nor is it possible to reconstruct the 

omitted constant and still determine other values. check this last point but I’m pretty sure.  
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The phrase “not orthogonal to all other variables” covers the case of estimation only on categorical 

variables. If estimation is carried out on a set of mutually exclusive variables, the values for any 

variable can be determined by differencing without reference to the others. However, where there 

is any non-zero correlation the missing coefficients cannot be re-estimated. Hence the “special 

case” of categorical variables can be dealt with in the same framework as other regressions. 

 

This does not require that an estimated coefficient be statistically significant. The rule derives from 

the mathematical properties of the normal equations, not the statistical properties of the data. 

Suppressing a significant coefficient reinforces the rule but is not strictly necessary. 

 

This suppressed-coefficient rule has the advantage of being clear, easy to implement and causing 

few problems for researchers. In business data a range of incidental parameters is often produced 

(such as industry or time dummies) in addition to the constant, any or all of which are commonly 

left out of published results. The rule has been in use at UK Office for National Statistics since 

early 2004 and has met little resistance. 

  

One particularly useful effect of this rule is that a class of models which estimate incidental 

parameters become inherently safe. An important member of this is panel or longitudinal data 

(repeated measurement). A model such as  

 

it it i ity x uβ α= + +  

 

will estimate individual-specific effects, even for random-effects models. These tend to be both 

numerous and of little interest and so are omitted from published results. These results will be non-

disclosive without the need to omit estimates from the main coefficient vector. 

 

3. Evaluating the likelihood of approximate disclosure 

 

The previous section described how exact identification of values can be prevented. Exact 

identification is highly unlikely even without the above precautions in place, because it relies upon 

being able to difference regressions effectively, which in turn requires detailed information about 

how the regressions were constructed. 

 

However, it may be sufficient for an intruder to have a rough idea of the value of a variable – for 

example, by taking coefficients and creating fitted values of the dependent variable. In this section 

we consider how we can quantify this risk and whether any additional rules are necessary. We 
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concentrate on created fitted values for dependent variables. A similar analysis could be carried 

out for trying to identify an explanatory variable. 

 

3.1 Approximating values 

 

Using the same matrix notation as before 

 

y X uβ= +  

 

Estimated parameters are: 

 

( )
( )

1

2

ˆ ' '

ˆ ' /

X X X y

u u N K

β

σ

−=

= −
 

 

with the estimated variance typically being reported alongside coefficient estimates. The equation 

residuals are 

 

( )ˆ ˆˆe y y X u X u Xβ β β β= − = + − = − −  

 

Suppose an intruder wishes to find the exact value of a dependent variable y1. The residual e1 has 

the expected value 

 

( )( )1 1 1
ˆ( ) 0E e E u x β β′= − − =  

and variance 

( )( )
( )( ) ( )( )
( ) ( )( )

2

1 1 1

2
1 1 1 1 1

12 2
1 1 1 1

ˆ( )

ˆ ˆ ˆ2

ˆ' 2

V e E u x

E x x u u x

x X X x E u x

β β

β β β β β β

σ σ β β−

 ′= − − 
 

′ ′ ′ ′= − − + − −

′ ′= + − −

 

 

The unknown error term u1 is not independent of the estimated coefficients. Recalling that 
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( )
( )
( )

1

1

1

ˆ ' '

' '( )

' '

X X X y

X X X X u

X X X u

β β β

β β

−

−

−

− = −

= + −

=

 

 

Then 

 

( )( ) ( )( )
( )

1

1 1 1 1

1 2
1 1

ˆ ' ' .

'

E u x E x X X X u u

x X X x

β β

σ

−

−

′ ′− =

′=
 

 

and so 

 

( )( )12
1 1 1( ) 1 'V e x X X xσ −′= −  

 

This is smaller than the standard error of the regression, reflecting the fact that this observation 

contributed to the estimates. It reaches its minimum value when this observation contributes most 

to the regression (X’X→x1x1’), and approaches the standard error when the observation has a 

negligible impact (x1→0)1. 

  

If the published descriptive statistics are available, then an exact confidence interval can be 

calculated without the need for variable values. Using 

2

2

ˆ ( ) /( )

/

ˆ ˆ'

TSS ESS N K

R ESS TSS

ESS X X

σ

β β

= − −
=

′=

 

Then 

 

( ) ( )
( )
( ) ( )( )

1

1 1 1 1

2 2
1 1

2 2 2 2 2
1 1

ˆ ˆ' /

ˆ /

ˆ ˆ/ ( ) 1

k kk

k kk

x X X x x x ESS

x ESS

x R N K R

ββ

β

β σ

−′ ′ ′=

=

= − −

∑

∑

 

 

                                                 
1 Rewrite as deviations from the mean…? 
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When evaluated at the largest vector in X, this enables the minimum predictive error on a 

dependent variable to be ascertained. In other words, this allows the NSI to determine whether an 

intruder, working with the published coefficients and descriptive statistics, would be able to derive a 

fitted value within a specified level of certainty. 

  

Note that, although the above term contains ESS as a level not a ratio, and appears to be 

increasing in N, it cannot be stated that N→∞ leads to the error converging to the standard error of 

the regression. This ignores the dependency of the estimates of β on the current set of 

observations (X, y). For us to assert that the predictive error converges to the standard error would 

require some assumption on the distribution of variables, which we have avoided doing so far. 

 

3.2 Approximation for new observations 

 

If the published coefficients are used for prediction by the application of a new set of observations 

x0, then a similar set of confidence limits can be derived.  Without detailed proof (such a proof can 

be found in standard econometrics texts) we offer 

 

( )( )
0

12
0 0 0

( ) 0

( ) 1 '

E e

V e x X X xσ −

=

′= +
 

 

The intuition behind this is that the new error is assumed to be uncorrelated with the errors used to 

generate the coefficients. Therefore, the values of explanatory variables increase uncertainty as 

they move away from the mean values used in the regression. 

 

In this case, the standard error of the regression is the minimum level of uncertainty, achieved 

when the new explanatory variables equal the mean of the variables used to calculate the 

coefficients. The predictive error cannot be reduced below this level.  

 

3.3 Hiding the confidence interval 

 

The above calculations provide an intruder with an indication of how likely his predictions are to be 

wide of the mark. They do not in themselves help with the identification of values. Nevertheless, it 

may be prudent to restrict an intruder’s ability to define these confidence limits, to increase 

uncertainty surrounding any predictions. 
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The recommended solution is the same as for exact identification. Not publishing a coefficient 

means that neither a point prediction or a confidence interval can be determined. Again, it not 

necessary that the suppressed coefficient be statistically significant, as long as its insignificance is 

also not reported. 

 

An alternative is to restrict the publication of descriptive statistics. This is not preferred. The 

statistics are published because they are useful. Suppression of descriptive statistics also cannot 

prevent exact disclosure as described above. This therefore requires two rules to be implemented 

instead of one. 

 

3.4 Using R2 directly as an estimate of riskiness 

 

Corscadden et al (2006), using a similar analytical approach to functional form, develop an 

alternative measure where a direct relationship between R2 and the required level of uncertainty in 

a regression can be quantified. This is a measure of the average riskiness, not the maximum, and, 

as in the above example, could be relatively easily coded to be a standard output from regressions. 

 

4. Non-linear estimation 

 

A non-linear estimate is inherently non-disclosive. Define a basic equation and the resulting 

estimate  

( , , )

ˆˆ ( , ,0)

y f X u

y f X

β
β

=

=
 

 

where y, X, β, and u are appropriate matrices or vectors. The characteristic of a non-linear 

equation is 
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∂

 

 

and that therefore 

 

( , , )
( , , )

( , , )
( , , )

f X u
dy dX f dX u

X
f X u

dy d f X d u

β β

β β β
β

∂= ≠
∂

∂= ≠
∂

 

implying 



19 
 

 

ˆ ˆˆ ( , , ) ( , ,0) ( , , )y y f X u f X f X uβ β β β− = − ≠ −  

and 

ˆ( , , ) / ( , ,0)y f X u N f Xβ β= ≠∑  

 

This is in contrast to the linear case where the final equalities hold. 

 

In general, there is no opportunity to differentiate two equations on the basis of summary statistics 

to identify the value of explanatory variables. Some exceptions can be derived; as noted in section 

2.2.1 for the linear case, on a single explanatory variable and a binary dependent variable, the 

difference between the additional variable and the mean is sufficient to identify the qualitative 

features of the dependent variable. This does not hold in the general case (K>2) due to the 

interactions between explanatory variables. Reznek(2004) does however point out that where all 

the explanatory variables are binary some inferences can be drawn. 

 

Because of the range of non-linear models, this paper does not investigate this issue further. This 

is an area for more work. 

 

For non-exact identification, as for the linear case both fitted values and confidence intervals can 

be calculated. However, as for the linear case, hiding certain coefficients makes this completely 

non-disclosive. Hence the above rule still holds. 

 

5. Discussion: the role of means and coefficients 

 

In the preceding sections, regression models have been unpicked to generate special cases 

regressions might be disclosive by differencing. A solution proposed has been to hide certain 

coefficients, which solves both the problem of disclosure by differencing and the problem of 

calculating confidence intervals for fitted values. 

 

There is however, an alternative. Many of the above results depend upon knowledge of the means 

of the variables (in the case of binary variables, these are frequencies). Without means, similar 

conclusions on the non-disclosiveness of regressions can be reached. 
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However, there are reasons for focusing on the hiding of coefficients: 

• means are useful statistics and therefore being unable to publish means along with 

regressions would inconvenience researchers. This is particularly true in the case of binary 

frequencies 

• many coefficients are “incidental” parameters; that is, they are included to improve the fit of 

the regression but are not of direct interest. Such parameters include time dummies, 

individual intercepts in panel models, sample conditioning variables, and even the constant 

in most cases. 

• coefficients are specific to a regression and are therefore not easily reproduced by other 

researchers. Means, on the other hand, have an existence independent of any regressions, 

and so are more likely to be generated “by accident” in papers unrelated to the work in 

hand. It is quite possible that the means for variables would not all be published together, 

but could be split over several papers 

 

In short, reducing the number of published coefficients is likely to meet less resistance from 

researchers and also offers more security that the omitted values are not going to be reproduced 

elsewhere. 

 

6. Statistical quality and other issues 

 

6.1 Quality of the regression 

 

It has been suggested that certain features of data such as outliers or multicollinearity can increase 

the disclosiveness of regressions. These points can be addressed as follows: 

 

Outliers: outliers are variables with large deviations from the regression line, but which are in 

themselves not significant in determining the relationship. It should be clear from the above 

commentary that this is not an issue for disclosure control. An outlier will have a large variance and 

poor fitted value. These make it less disclosive than any other variable, if anything. It does not add 

anything to the overall disclosiveness of the regression 

Influential points: these differ from other outliers in that they do have a significant effect on the 

regression line – for example, by running regressions on several small companies and one very 

large one. This is a particular concern for SDC methodologists, as this is the situation in which 

differences between regressions are (a) most likely to be discernible and (b) most likely to be 

published – for example, a researcher is interested in demonstrating the impact of large 

companies. Section 3 gave the formula for calculating the confidence interval for fitted values. 
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The omitted-coefficient rule still deals with this issue. Without the coefficient, neither a fitted value 

or a confidence interval can be calculated. Although an intruder might be aware that there has 

been a large impact on the regression, this cannot be quantified.  

Multicollinearity: multicollinearity raises the standard error and makes attribution of effects to 

particular variables more difficult. It therefore raises no new SDC issues. 

Measurement error: as for multicollinearity, this is not an SDC issue. Measurement error 

increases variances as well as biasing the coefficients downwards. It does not add any new 

disclosure risk.. 

Estimation on public explanatory variables:  in theory, estimation on public explanatory 

variables with an excellent fit allows a good approximation to actual values to be generated. Aside 

from the likelihood of such a model being fitted, the formula in section 3 allows the minimum 

prediction error to be assessed. Moreover, work by Corscadden et al (2006) seems to show that in 

practice this overstates the likelihood of making accurate predictions. In any case, removing 

coefficients prevents an intruder generating fitted values and confidence intervals. 

 

In short, it should be clear from these examples that it is important to distinguish statistical quality 

from disclosiveness. The latter is not determined by whether a model is good or bad, but by the 

alternative information available. That said, on the whole poorly specified regressions would tend 

to cause fewer concerns for SDC. 

 

An exception to the “bad is good” rule is where there are few observations. If a researcher 

estimates a model with no degrees of freedom, clearly coefficients relate directly to values of 

explanatory variables. However, this is an area where it is possible to identify quickly whether a 

regression is genuine or not. There is work to be done on determining whether there are disclosure 

issues in regressions with few degrees of freedom. 

 

6.2 Transforming variables and relationships 

 

Converting non-linear to linear equations (for example, via GEE, or log-linearisation) does not 

change the results of any sections. The emphasis in this paper is to see whether the form of 

estimated relationship is itself disclosive. Whether the variables themselves are useful is another 

issue. The linearised model has the same characteristics as the linear model described above, and 

hence should be treated as such (see Reznek(2004)). 

 

Clearly, however, the discussion above has been taking place in an idealised world for intruders. In 

practice, data transformations, sample selection, treatment of missing values, simultaneous 
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equations, solution algorithms, method of estimation etc will all make the reproduction of the 

regression environment by intruders extremely difficult.. 

 

6.3 Recovering omitted coefficients 

 

One potential flaw in the omission-of-coefficients argument is that it may be possible to recover 

coefficients. For example, if the estimated constant is omitted but the means of all variables left in, 

then the constant can be easily recalculated. 

 

This is a red herring. With all the means and coefficients, a researcher can unpick the regression to 

determine the means of additional dependent variables. However, there is no incentive to do this. 

The same values can be derived entirely from the difference of the means – as can the means of 

the explanatory variables, which cannot be derived from the normal equations. The regression 

itself contributes nothing to increased disclosure risk. 

 

6.4 Regressions on a single unit 

 

The above discussions relate to regressions on several units, and assumes that an intruder is 

trying to get information on one unit. However, it is possible that a regression could be run on a 

single unit – for example, quarterly data on the performance of a company could provide sufficient 

observations to run regressions solely on that company. In this case, all coefficients are directly 

informative about the company, and hiding one or two does not reduce the disclosiveness of the 

others. This is a problem for the NSI which is not addressed here, as the solution requires the NSI 

to identify the units in regressions2. 

 

6.5 Releasing residuals 

 

The above analysis assumes that the intruder does not have access to the residuals of the 

regression. If residuals were released, even if not identified with particular units, it could that 

scenarios could be constructed where even a reduced coefficient set would be informative. For 

example, it may be that, if most variables have a limited range (age, say, or categorical variables), 

then an intruder could try to identify units by looking at extreme values which could not be 

generated from known coefficients and acceptable variable range. At the moment, this is highly 

speculative, and one would suspect that the mean-reverting qualities of regression would make 

this outcome unlikely, but this clearly requires further work. 

                                                 
2 In the UK this is addressed by having a blanket ban on regressions on individual companies. The author is 
grateful to Martin Weale for raising this possibility. 
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6.6 Releasing coefficients for prediction 

 

One aim of modelling is to release a set of coefficients that can be used to predict values in other 

dataset (for example, using earnings information in one dataset to construct a model which can 

then be used to generate a predicted income variable in a second dataset). In this case, holding 

back coefficients is not a valid operation. However, as shown above and in Corscadden et al 

(2006), it is perfectly possible to assess the prediction risk for a full set of coefficients so that the 

risk of re-identification in the original dataset can be quantified. This is a maximum risk estimate, 

and would need to be adjusted to take account of, for example, the unavailability of the true 

explanatory variables. 

 

7. Conclusion 

 

This paper has discussed the opportunities for determining confidential information from regression 

outputs. This is an arcane but important topic: as increasing amounts of analysis are carried out on 

data in secure environment, there is little proof one way or the other to show whether there are any 

disclosure control issues for analytical results. 

 

This paper has addressed one issue, that of regressions. In conditions conducive to intruders, it 

has shown that retrieving individual data points from estimated values and summary statistics is 

almost, but not quite, impossible. The exceptional cases can be identified in the linear case; for 

non-linear estimates, further work needs to be done. 

 

Even for exceptional cases, a simple rule allows results to be made completely safe. This rule is 

simple, easily enforceable, classifies a group of models as inherently safe, and in practice has 

proved uncontroversial with researchers in the UK Virtual Microdata Laboratory since its 

introduction in 2004. 

 

This has had a significant impact on the ability of the VML to process a large amount of requests 

for output with a very small number of staff: the target clearance time for results has dropped from 

two weeks to two days, with the median clearance time less than one day. This is therefore not a 

theoretical demonstration but a result which has a direct impact on the practices of NSIs and other 

guardians of confidential data. 

 

This paper has presented the intruder with a near-ideal environment – the data is inherently 

interesting, has not been transformed or sampled in some way that would make it difficult to 
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identify the included observations, values of additional explanatory variables may be known. In 

practice, none of these conditions are likely to hold. Therefore, a linear regression can in general 

be treated as an extremely safe output, in that there is little practical chance of some of the access 

routes mentioned here to be exploited. The view of researchers, that regressions are inherently 

safe, is therefore upheld. Moreover, we have demonstrated here that a simple adjustment to 

outputs, one which is often done automatically when publishing results, makes them completely 

opaque.  
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